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1. INTRODUCTION

There are many situations where the investigation of properties of non-
linear dynamics is simplified or even made possible by the use of symbolic
dynamics. This is typically true in cases where a complete mathematical
foundation of the method can be achieved by defining a coding map that
"relates the dynamical system, topologically and measure theoretically, to
shift spaces" (R. Bowen(1)). It is also true when the time series corresponding
to some experimental measurement are encoded, because of some technical
constraints (e.g., precision, frequency acquisition), as symbolic sequences
which can be used, by means of some hypothesis, to explore the underlying
dynamical system.'2'31 This is mainly the situation we have in mind to
motivate the present work.

In both cases we are faced to two complementary issues. The first one,
which is of topological nature, is the possible existence of a grammar, a set
of restrictive rules that allows only a subset of sequences to appear as orbits
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of the dynamical system after the encoding operation has been performed.
The second issue is of measure theoretical nature. Since the type of allowed
blocks of symbols in a sequence is fixed by the grammar rules, what
remains to know is the mean return time of each of these blocks inside the
sequence, or equivalently, if we suppose ergodicity, their asymptotic dis-
tribution. In other words we need to supply our symbolic dynamical
system with an ergodic measure.

For a large class of systems, ergodic measures can be constructed by
a powerful tool, the so called Gibbs ansatz.(1>4> These measures are inter-
esting in several aspects. First, they arise as solutions of a variational prin-
ciple which does not make direct reference to the dynamics. Moreover, they
can be built through a spectral construction that shows how the dynamics
weights the phase space in a cascade tree, on smaller and smaller scales.
Finally, and it is the most important for us, the asymptotic frequencies of
the blocks of symbols are approximately, in a sense to become clear below,
given by a simple function of the block, the energy, which in turn can be
computed using a potential. Since the last is a function defined on the con-
figuration space, we can hope to have in this way a concise and tractable
description of the recurrence times and the asymptotic distribution of the
blocks associated with the different parts of phase space.

In ref. 5, P. Collet, A. Galves and A. Lopes addressed the question of
how to identify the grammar matrix, being given a sample sequence
produced by a Gibbs measure whose potential is known. In that article, the
authors defined two selection procedures, the first based on a maximum
likelihood and the second on a minimum entropy principle, both leading to
a selection of the original grammar in the limit of diverging observation
time.

In the present work we first address, in a sense, the complementary
issue, that is to say, how to identify a potential starting from a sample
sequence generated by an unknown Gibbs measure, when the grammar is
known. Notice that our problem is related to the more general context of
statistical inference methods/6^8' See also ref. 9 for a recent paper with
applications and bibliography. In our case, as we will discuss in the next
section, what can be identified is the equivalence class of the original poten-
tial. Our approach is similar to that of ref. 5, as we take advantage in a
fundamental way of the thermodynamic formalism for dynamical systems.
Of course, in order to do so, we need to restrict ourselves to the class of
ergodic measures represented by Gibbs measures. A different point of view
is adopted in ref. 10, where the authors propose a universal scheme which
applies to a class of stochastic processes, and converges in a precise metric
to the sampled process when the observation time diverges, without referring
to a particular class of ergodic measures.
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We shall see that the two strategies we propose to select the original
potential will exclude all the "wrong" potentials. However, the observation
time that is necessary to exclude each one of these potentials depends on
it, and therefore, in general, this procedure does not give a conclusive
choice of the "good" potential. This is in contrast with the corresponding
situation for the choice of grammars, essentially because the total number
of different grammars is finite.

Stronger results are available in the case of finite range potentials,
which can also be used as approximate guesses to the unknown departure
potential, as shown in Section 6. In this case we were able to prove that,
for each chosen finite range r, both strategies lead to the identification of
the original equivalence class of potentials in the limit of diverging observa-
tion time. Moreover, in the case where the observed sequence is produced
by a potential that is not of finite range, both strategies will converge to a
finite range solution that is a projection of the original potential on the set
of the range r potentials.

Together with a criterion for the estimation of the range of a potential,
the previous construction may give efficient criteria for the identification of
Gibbs measures.

Finally, we show how relative entropy can also be used in identifying
a grammar, adding then a different criterion to the ones discussed in ref. 5.
This tool allows then, in the case of finite range potentials, to simulta-
neously identify the grammar and the potential.

The motivation to the investigation carried out in this article comes
from the study of turbulence. In ref. 2 the authors analyse the constraints
imposed on a dynamical system which is supposed to model an experi-
mental situation with given (i.e., measured) statistical properties. We hope
that the present work will help to carry further this analysis by sheding
light on the properties of the statistics of time recurrences at different scales
in phase space. Our confidence is based upon the existence of many results,
see ref. 11 and references therein, that become available as soon as a Gibbs
measure is fixed.

Besides the usual tools, in this work we made an extensive use of
relative entropy obtained by a limit process of the Kullback-Leibler dis-
crimination marginals. The use of this quantity was suggested to us by the
reading of the interesting paper(12) of J. T. Lewis, C. E. Pfister, R. Russel
and W. G. Sullivan. In the context of dynamical systems, the relative
entropy has an interpretation which comes from a "relative ergodic result"
that we obtain for this quantity.

This article is divided as follows. Section 2 gives a short list of defini-
tions and results for the reader's convenience. In Section 3 we prove a
relative ergodic result that is used in Section 4 to treat the problem of the
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identification of potentials and in Section 5 to discuss identification of
grammars. Section 6 deals with the case of finite range potentials. We end
up with a discussion that includes some perspectives for further research.

2. MEMORANDUM

The purpose of this section is to review, for the reader's convenience,
the results we need in the next sections without giving proofs. Readers
familiar with the subject can directly pass to Section 3.

2.1. Full Shift, Subshifts of Finite Type, and Grammars

We work with the space of all infinite sequences co — i{(w] /2(w) • • •
where ik,k=l, 2,..., belongs to a finite alphabet {I,..., TV}, with TV^2. This
set is {!,..., N}N and we denote it by Q. Together with the shift map:
a: Q -> Q, aw = i2(u>) /s(w) • • • V/e N, we define the full shift on TV-symbols
(Q. f f ) .

If we specify in advance that a finite number of finite strings of con-
secutive symbols shall not be allowed, then we obtain a cr-invariant sub-
process called a shift of finite type. There is no loss of generality if we
consider forbidden words of length two by interpreting certain words as
new symbols (for a precise statement of this result, we refer to ref. 13,
p. 119).

In consequence, let G be a TV x TV matrix of zeros and ones where the
GtiJ is zero precisely when the word of length two in(co) in + i(ca) = ij is
forbidden. We call G a grammar. So we define
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(QG,a\Qc) is called a shift of finite type (or a topological Markov chain).
We will simply write (£2G, er).

We shall assume that G is a primitive matrix, that is, there exists «0

such that «#5«0 implies G"(i,j)>0, V;, j— 1, 2,..., TV. Obviously, when all
sequences are allowed (i.e., G(i, j)=l, W, j), then we get the full shift.

We suppose that all our measures are cr-invariant (i.e., if A is any
^-measurable set then ft(ff~lA)=(i(A)) and normalized (i.e., ft(QG)=l).
The set of such measures is denoted by J(a(QG).

The set of all the sequences which coincide on the first H symbols is
denoted by [i^co) i2(u>) • • • /„(«)] or by [/, ;2 • • • ;'„], and it is called a cylin-
der. Cylinders define the topology as well as the Borel sets.
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2.2. Entropy

We recall two results about entropy. Our reference is ref. 14.
In our context, the measure-theoretic entropy, or simply the entropy,

of a o-invariant measure can be defined by

where

The limit exists because {//„}„>! is a subadditive sequence (i.e.,
Hm+n^Hm + Hn for all integers m,n^l).

It is known that sup{h(/u):/ueJfa(Q0)} equals the topological
entropy, which in the case of the full shift equals Log N, the logarithm of
the cardinal of the alphabet.

We now state the Shannon-McMillan-Breiman theorem for ergodic
measures.

Theorem (Shannon-McMillan-Breiman). Let ft be an ergodic
measure on (QG, a) and define

Then {fn((o)}n>l converges for almost all co to h(/2).
The mathematical expectation of fn is easily found by multiplying

its value on each cylinder [ / ! • • • / „ ] by the measure ME' i • • • ' « ] ) of the
cylinder and summing on all possible cylinders:

But limn^«,(//„/«) — h(ft) by (1), which means that the mathematical
expectation of/M(co) approaches h(u) as n -» oo. So the theorem states that
not only does the mathematical expectation of /„(«) but/n(o>) itself con-
verges for almost all co to h(u).
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2.3. Gibbs Measures

We refer to ref. 1 or to ref. 15 for proofs, and to ref. 4 for more general
results.

2.3.1. Potentials. As we shall see, a Gibbs measure is determined
by a potential. The family of potentials we consider is, as usual, that of
Holder continuous functions.2 Given 0 <B< 1, we define a metric on Q by
dg((o, oj'} = 0p where p is the largest integer such that wi = co'/, 1 ^ / ^ p — 1
(with this metric, Q is a complete separable metric space, i.e., a Polish
space, and it is compact).

For a continuous function (/>: Q—> IR and n^\ define

It is easy to see that |0(o>) — ^ ( o / ) l < Cdg(co, co') if and only if varn ijt^CO",
n= 1, 2,..., where C is some positive constant.

Let <Pe= {$: <{> continuous, varn(j> ^ C6", n — 1,2,..., for some C>0}:
it is the space of Holder continuous functions with respect to the metric d0.

Let (&(Q) be the Banach space of real continuous functions on Q with
the sup-norm •!,„: if (j>s%J(Q], then 101^ :=sup{ \<j>(io}\: o>eQ}.

We introduce the norm | -\g: \<j>\g:= sup{(varn (/>/&"), n ^ 1). Now <t>g is
a Banach space with the norm ||- \\e := \-\m + \ - \ B .

If 0 < 6 < 9' < 1 then <I>ff 2 <Pff. This gives a "filtration" of the space of
all Holder continuous functions: <P = (J0<0<i $B-

Interesting classes of functions that lie in all of the @e, Q<6<\, are
the following. Let r be a positive integer. Then define, for r^ 1,

<£>r consists of locally constant functions depending on the first r symbols
ii(co)---ir(a)). We call <j>€<P,. a r-symbols potential. Notice that f^s
<P2s ... and U,ro=i^ = n o < f l < i ^ .

We can use r-symbols potentials to uniformly approximate a general
one. Indeed, assume that (f>e00 for some 0 < 6 < 1, then clearly we can
choose (j>r e <t>,. with

2.3.2. Gibbs Measures. The next theorem states the existence
and the unicity of Gibbs measures together with an explicit formula for the

2 It implies that Gibbs measures coincide with equil ibrium states.
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measure of cylinders. Then we recall the conditions under which two poten-
tials give the same Gibbs measure. Finally, we state a formula that relates
a potential to the corresponding Gibbs measure.

Theorem. Suppose ^e^V Then there is a unique <r-invariant
measure, which we denote by /u°, for which one can find some constants
P, c{, c2, with 0 < Ci ̂  1 ̂  c2 such that for all n > 1 and for all co e QG:

where (Sn<j>)(co) :=£^o<^«).
This double inequality holds for all co e QG and for all n > 1 and of

course the constants cl, c2 and P depend on the potential and on the gram-
mar. P = P(<f>, G) is called the pressure of (j>, and ^ the Gibbs measure
associated to (j>.

For / continuous, one defines the Perron-Frobenius-Ruelle operator:

It can be proved that /u° = i>v. b is the right eigenfunction (positive and
Holder continuous) associated to the simple maximal positive eigenvalue
l = ep of <£$. v is the corresponding left eigenfunction, which is a measure
(i.e., j J^j/dv = A j fdv for all/continuous).

A Gibbs measure is mixing, so in particular ergodic. The mixing
property in the case of a grammar G is the consequence of the primitivity
of G and it is equivalent to the fact that the shift a is topologically mixing.

Definition. Two potentials <j>, ty e 3>g are equivalent with respect to
a (we write 0~i/0 if there exists a Holder continuous function u and a
constant Ke R such that

for all coeQ. It is easy to check that "~" defines an equivalence relation.

Proposition:

This proposition implies that what can be identified is not a single
potential, but only its equivalence class, since the physically observable
quantity is the measure.
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It is easy to check that if <f> ~ tj/, then P(<j>, (?) = P(((/, G) + K. If one is
only interested in the measure, it is not a restriction to take a null pressure
potential because if </> is given, we put \j/ = tj> — P((j>, G). Then it follows that
P(^, G) = 0 and i / f ~ < £ , hence /4 = /^.

We can even define \fr ~ (/) in such a way that -P(iA, G) = 0 and b^co),
the eigenfunction of jSf^ associated to the eigenvalue ep(<1''G) = 1, is identi-
cally one.(15) We call such at potential (// a normalized potential. If </> is
given, then the normalized \j/ is defined by (4) with K=—P((j>,G) and
u(oo)= -Logib^co)).

Lemma (see ref. 15). If if/ is a normalized potential, then uniformly

Remark (1-symbol potentials and Bernoulli measures). Let us con-
sider the full shift with Q= {0, 1}N. When <j> is a 1-symbol potential, we
have:

and

The measure is completly determined by:

By putting jU0 = p, we get all the Bernoulli measures /up, 0 < p < 1. We can
thus represent a Bernoulli measure via a 1-symbol potential.

2.4. The Pressure and the Variational Principle

The pressure can be obtained via a variational principle:

Theorem (Variational principle). Fix a potential ^e<Pff and a
grammar G. Then the supremum sup^{h(rj) + J </>drj}, taken over all
cr-invariant measures, is reached only by the Gibbs measure ^ and equals
P(<j>, G):
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This links pressure with entropy. It is important to notice that the varia-
tional principle does not make explicit reference to the dynamics.

3. A RELATIVE ERGODIC RESULT

3.1. Relative Entropy of Two Measures

In this section, following ref. 12, we define the relative entropy of two
measures from the Kullback-Leibler discrepancy.06'17' We prove what we
call a "relative ergodic result" for the relative entropy, which gives an inter-
pretation of this quantity in the context of dynamical systems.

Definit ion (Kullback-Leibler discrepancy). The K. L. discrepancy
of the measure X with respect to the measure p is given by

if X is absolutely continuous with respect to p, that is if the Radon
Nikodym derivative dX/dp exists. If not, D(X p) := + oc.

Notice that in general D(X \ p] i^D(p \ 1) (so D is not a distance). In
particular, if we have two ergodic measures we get + oc for D because they
are orthogonal.

We can always define for any integer n ^ 1 the K. L. discrepancy of the
corresponding w-marginals:

We have either to suppose that p gives a positive measure to any cylinder of
any length, or to suppose that X([/i • • • ' ' „ ] ) = 0 whenever p( \_il • • • / ' „ ] ) = 0
because we can put "0 Log 0/0 = 0." Gibbs measures, for example, give a
positive measure to any cylinder.

In the case when p is a Bernoulli measure and 1 is any cr-invariant
measure, the sequence Dn( X \ p )/n converges. Here is the proof. Let us put
Dn:=Dn(X | p) where X is any measure, p is a Bernoulli measure, i.e.,
/ > ( [ ' i - - - ' J ) = / > ( [ ' i ] ) x • • • * />( [ /„ ] ) • W e have



706 Chazottes et al.

For the second equality we used the cr-invariance of the measure p. For the
third equality we used the cr-invariance of the measure A: £,-2 . . . ,n A([; '[ • • • ( „ ] )
= A( [/[]). Hence, by (1), we obtain

This motivates the following general definition:"2'

Definit ion (Relative entropy of two measures). The relative entropy
of the measure A with respect to p is given by

We always have D n ( A | / > ) ^ 0 for any n ^ l . Indeed, for any ,x#=0,
x Log x ^ x — 1, with equality if and only if x = 1. Hence for any n^l, we
have

with equality if and only if A([ / , • • • / „ ] ) = /?([/! • • • < ' „ ] ) • Multiplying this
inequality by p(['i •• •' '«]) and summing over il,..., in yields £>,,(A | p)^Q,
with equality if and only if A([i' t ••• /„]) = /»( [/i ••• /„]), V7lv.., /„, i.e., if and
only if the marginals of the measures A and p on {1,..., N}" are equal.

In general, h(X p) = 0 does not imply A = />. However, we shall see
that if A is an ergodic measure and p a Gibbs measure, then /z(A | p) = 0 if
and only if A = p.

We now give two simple examples.

Example 1. Let us consider the full shift on Q = {1,..., N]N. fj. is an
arbitrary ergodic measure and v the uniform product measure which can be
considered as a Gibbs measure corresponding to a constant potential.
Because v ( [ i ] ) = l / N , we get by (10): h(/u \ v) = Log N-h(/u).

Example 2. Consider np and /^ two Bernoulli measures (0<p,
q<\) defined on the full shift with Q= {0, 1}N. We get by (10):
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3.2. A Relative Ergodic Result

Let np and nq be two Bernoulli measures (0 < p, q < 1) defined on the
full shift with £ = {0, 1}N.

Let co be a generic point of the measure f i p , i.e., such that # { i k ( a t ) = 0,
k = 1,..., n}/n -> p when n -> oo, which simply means that the frequency of
O's in the sequence o> asymptotically equals p.

Thus we can write:

i.e.,

On the other hand, we have by the Shannon-McMillan theorem that, for
(tp almost all co:

where h(pp):= -pLogp-(l -p)Log(l - p). So we get

Hence, if we take a cylinder which approaches a generic point of the
measure jj.p, then its measure by means of nq converges to zero exponen-
tially faster than by means of np. The exponential rate is precisely equal to
the relative entropy h(ftp \ nq) > 0.

It is possible to generalize this idea. We replace /up with any ergodic
measure and //? with any Gibbs measure in the formula (12).

Proposition. Let ^ an ergodic measure and v° a Gibbs measure of
potential <j>, both defined on QG, for any grammar G. Then, for n almost
all co:
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with

By the notation ":=<" we mean that:

This proposition says that not only does the mathematical expectation
of ( l /» )Log( / / ( [ / , (a ) ) . . . / I I (a ) ) ] ) /v° ( [ / 1 ( to ) . . . / l l (a ) ) ] ) )= : r a ( (a ) but rtt(to)
itself converges for // almost all co to h(y. v^).

Proof. It will be done in two steps. First, we compute h(n \ v°), then
we compute lim^^l/n) Log(//([/i(co) ••• /B(o>)])/v£([/i(co) • •• /Jeo)])) .

1. For convenience, we will write simply "£" for "£,•...,• " in our
estimations. Using (3), using the facts that £ /H['i • • • ' « ] ) = 1, for all n ^ 1
and#n = -£>([''i(w) • • • / „ ( co)]) Log(//([ii(cu) • • • / „ ( & » ) ] ) ) , we get:

We know that Vimn_>ao(Hn/n)=h(n) (see (1)).
Now put gn(co) :=(Sn^)(co)/n. Our goal is to prove that

We want to use the fact that for a uniformly bounded sequence of random
variables, convergence almost everywhere implies convergence in mathe-
matical expectation.(18)

Define gn(co) :=(Sn(f>n)((o)/n where <^ w ecP M is a «-symbols potential.
We can always choose </>„ in such a way that |^ — ̂ Joo < \(/>\gd" (see
Section 2). This implies that
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Hence gn(co) and gn(ca) converge almost everywhere to the same limit
which, by the Birkhoff ergodic theorem, is Iim,,_00((5n0)((u)/n) = | <f) d/u,
fi a.e.. Now £ ju( [ / i (co) ••• /„(«)]) gn(co)=: Jt{gn(u>}\ is the mathematical
expectation of gn(co) which converges to j <j> dy., because V«, Vco, ||n(ftj)| ^
||0||0, i.e., £„ is uniformly bounded.

It remains to write that

Hence lim,,^ Jt{(Sd)(a>)ln} =limll^00 Jt{(Stttn)(<o)ln} =\ $ dp.
Finally, we get

2. We now compute

By (3) we have

So we get

822/90/3-4-13
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By the Shannon-McMillan-Breiman theorem,

On the other hand, by the BirkhofT ergodic theorem we have

Hence we obtain, for any u> e Q n Q0(^i(Q n Q0) = 1), that:

Remark. The pressure of a measure fj. on QG is defined in the
following way:

So we can write the variational principle (7) under the form

We can see P^(<t>, G) as a generalisation of the entropy h(^i) in the sense
that .fyO, G) = h(/j.}. Then, because the pressure of the null potential is the
topological entropy, the variational principle generalises the variational
principle for entropy because we have

Now, the relative entropy equals the difference between P((/>, G) and
P^GYhdi v°) = P(<i>,G)-P„(<!>, G).

Lemma. h(n v^) = 0 if and only if n = v£.

Proof. It is nothing but the variational principle (7).
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3.3. Case of Two Gibbs Measures

Corollary. Let /^,/^, two Gibbs measures. Then

Proof. It is a consequence of (15) for the first equality, of (7) for the
second one.

Remark. According to (5) and the last lemma, h(n° \ /*£) = 0 if and
only if ̂ ~^ ' .

Now we examine the case when we have two Gibbs measures with
distinct grammars. We fix a potential <t>e<I>g and two grammars G, G'
such that G~<G' (i.e., QGcQG.). By convention, if a cylinder is forbidden
by a grammar, we write zero for the corresponding measure. Then
H?(\_ii(a>) • • • Uo)]) = 0 implies n$(\.h((o) • • • /„(«)]) = 0. For all n > 1, we
define

It is well defined if we put, as it is usually done, "0 Log(0/0) = 0." Thus
proposition (13) is valid:

We have obviously that

We immediately deduce that if G-<G' then P((/>, G) <P(<j>, G') because
relative entropy is positive.

4. IDENTIFICATION OF POTENTIALS

Consider any sequence <u in QG. We can ask the question if it is
possible to determine the potential whose associated Gibbs measure is the
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best adapted to the description of the source that has produced co. We
propose two criteria for characterizing the potential (/> we are looking for.

In practice, our knowledge of a sequence co is limited to its n first
entries. Now, if the string u> is typical for the Gibbs measure /u^, we expect
that the weight given by //^ to [(^(co) • • • / „ ( « ) ] will be bigger than
the weight given by any other Gibbs measure ju^, if n is sufficiently large.
This is of course a consequence of the relative ergodic theorem stated in
Section 3.

Let us define the cyclic empirical measure T™, relative to a sequence
co which is known up to its nth entry. In the case where there is no
grammar on Q, we have

Here &>„: Q —> Q is the blocking operator, defined by

The definition of T™ is such that, if \_ji-••jm~\ is any cylinder of length
m^n, then T™([jl • • •_/„,]) is the relative frequency of the block /, • • -jm in
the cyclic sequence tPn(co). T™ is obviously ergodic.

This definition has to be slightly modified when a grammar G is pre-
sent, since the block [in(co) i^co)] could be forbidden by G. If this is the
case, tPn(co) has to be defined by inserting between in(co) and ii(co) a block
of symbols [b("} • • • b$n)\, chosen in a way to make 2Pn(co) admissible by G;
of course, n + g(n) replaces n in equation (17). Now, the number g(n) is
bounded for all « by the KO defined in Section 2.1, so that the influence of
this modification on the measure 71™ will become negligible when n is large.
For simplicity, the proofs where T™ is involved are carried out as if it were
always defined by equation (17).

If the sequence co is typical for the Gibbs measure /u%, we expect 71"
to become closer to /u^ than to any other Gibbs measure //^ as n grows.
Now, we know that when two measures take close values on all cylinders,
their relative entropy h(n^ \ /u^) is small (according to the lemma of
Section 3.2, it is zero if and only if ju^ = ju^). So we expect the relative
entropy of T™ and n° to become smaller than the relative entropy of T™
and any other measure /^ (with \j/ not equivalent to <j>), if n is sufficiently
large.

Here are the results we have in this direction.
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Proposition 1 (Maximum likelihood criterion). For any two non
equivalent potentials <j>,\l/e<Pe, it exists a positive integer N (which
depends on ^, i/>, co) such that n^N implies:

for n^ almost all choices of to.

Proposition 2 (Minimum relative entropy criterion). For any two
non equivalent potentials (/>, \j/ e<Pg, it exists a positive number N (which
depends on <j>,\li,(o) such that n ^ N implies:

Propositions 1 and 2 essentially tell us that one is able to exclude any
"wrong" potential ifr, knowing [i^co) •••in(ca)] up to a sufficiently large n.
Unfortunately, this does not give a way to construct the "good" potential <j>.
Moreover, <j> cannot be found by excluding all the other potentials \j/,
since N, in Propositions 1 and 2, depends on t/> itself.

Proof of Proposition 1. It follows directly from proposition (13) in
Section 3.

with the observation that h(u^\u^)>0 for non equivalent potentials
^,<A.

Proof of Proposition 2. We have

where the sum runs over all cylinders of length m. Since this sequence
converges, because of the proposition of Section 3.2, any subsequence con-
verges to the same limit. Let us consider (18) for m = np, where/) = 1,2, 3,....
Now, from the form of the measure (17) we see that there are only n cylinders
of length np that have nonzero measure w.r.t. T™, namely ii(co) /2(«) • • •
in(a>) /!<«) • • • /„(«) • • • / ,(«) • • • /„(«), where the block i , ( a>) i2(co) • • • in(w) is
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repeated p times, and its first («— 1) circular permutations. Let us call
these cylinders c^np\co), /'= !,...,«.

Depending on the form of [/ ' i(ca) • • • /„(«>)], some of the c'"p)(co) may
eventually coincide. If two or more of these are equal, we will sum on only
one of them, let us say the one with minimum index ;'. We can thus write

where / is included in {1,2, 3,..., «}.
Gibbs inequality gives

where C1^, Q > 1, and COM is any sequence which belongs to c("p\u>}.
Choosing a>(/) = ff'~l@>

n((o), and using the fact that

we get

We now need the following lemma:

Lemma. For all (pe0g and for fj.v almost all u>
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Proof of (21). From definition (17) it is clear that we can write:

On the other hand, using repeatedly the fact that a" + J&n(a>) = aj&n(co),
Vy = 0, 1,2,..., we get

the last equality following from (19).

Proof of (22). Since i/> e 0g, we have

This implies that the sequence {j \l/ dT™} converges whenever the sequence
{(!/«) Z£lo ^(ffk(^}} converges, and they have the same limit. Relation
(22) now follows from the ergodic theorem applied to //^.

Using (20) and (21), we can write
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Equation (22) implies that, Ve>0, there exists N(<l>,\]s,s) such that
n^N((j>, \l/, e) implies

so that the proposition is proved.

5. SELECTION OF GRAMMARS REVISITED

Let us denote the set of all grammars on {!,..., N} by $. We can intro-
duce a partial order in eS: G-<G means that for all pairs (i, j) we have
G j j ^ G ' j j , with a strict inequality for at least one pair. It is clear that
G<G' implies QG^QG,.

5.1. Maximum Likelihood Procedure

In ref. 5, the following subset of ^ is defined: a potential tj> e <&e is fixed
and for all o> e Q and for all n ^ 1

By convention, if [/i(co) • • • ;„(&>)] is forbidden by G, we put ^([ii(ca) • • •
'ni60)])= 0. If not, we always have n^([i\(ca) • • • ;'„(«)]) > 0. Then we have
the result:

Theorem (Ref. 5). For any potential (/>e<Pg and any grammar
Ge 'S, MJ((O) - » { G } for ̂  almost all co, as n diverges.

In ref. 5, the proof is given in two lemmas. The first one eliminates all
the grammars smaller than the "good" one and also those which are not
comparable to G. (We recall that we only have a partial order in fS). As
pointed out in ref. 5, this lemma is a direct consequence of the Birkhoff
ergodic theorem for the measure /u°. We first recall it for the reader's
convenience.
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Lemma. Let G and G' two grammars such that G' -< G or such that
one entry is one for G' and zero for G. Then

It remains to eliminate grammars G' such that G-<G'. This is achieved
with the second lemma. Here we propose a proof that is in essence the
same as in ref. 5 but that looks shorter thanks to the result (13) on relative
entropy.

Lemma. For any potential <t>e<Pg, there exists an integer N0 =
N0(co), which does not depend on G because of the finitness of ^, such that
for any pair of grammars G, G' with G -< G' and for all n ^ 7V0, we have for
H^ almost all a>:

Proof. Let us fix a potential <j>e&e. If G-<G' then we can apply
proposition (13):

with h(n$ \n$') = P(<l>,G')-P((l>,G)> 0. This means that given any e > 0
and any ca in a set of measure one w.r.t. f t ° , there exists an integer
N = N(s, G,cu) such that for all n ^ N we have

5.2. Minimum Relative Entropy Procedure

In ref. 5, the authors define a second procedure of identification based
on the minimisation of entropy, that gives the same answer as before for
potentials of sufficiently small norm. We now define another procedure, the
minimum relative entropy procedure, which identifies the good grammar
for any potential.

Given a sequence co and a potential 0 e <Pg, we define for all n ^ 1 the
following set (the minimum relative entropy set):
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T™ is the cyclic empirical measure based on o> defined in Section 4 for the
case where a grammar is present.

Theorem. For any potential (j> and any grammar G, the sets <^J(cu)
converge to {G} for ̂  almost all <a as n goes to infinity.

Proof. Let G' be such that G<G' and CD a given sequence. Using the
proposition (13) of Section 3, we get:

On the one hand, we know that G-<G' implies P((f>,G] <P(<j>, G') for any
potential (see Section 3.3). On the other hand, the facts that /^(^W^o) = 0,
and that r™ converges weakly, for fi^ almost all co (see equation (22) of
Section 4), imply that:

Ve>0, there exists N = N(co,s), which does not depend on G because
of the finitness of ^, such that n^N implies

The theorem is proved.

6. FINITE-RANGE POTENTIALS

The interest of considering finite range potentials lies in the fact that,
as it has been mentioned in Section 2, they can be used to uniformely
approximate any Holder continuous potential (/>*, while the corresponding
measures converge in the vague topology to /u^..<4)

We will see in this section that, on the one hand, we can give criteria
to test if an unknown potential is a finite range one; on the other hand, we
can propose two procedures to find what is the best approximation of
range r to an unknown potential.
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6.1. A Criterion for Determining the Range

An important property of r-symbol potentials, which can be derived
using the Perron-Frobenius-Ruelle operator, is that the associated Gibbs
measure jn satisfies the equation

for all values of /,,..., /„, n ^ r.
Equation (24) allows to derive a closed expression for the entropy

h(/Lt) in terms of the measures of cylinders of finite length. Substituting (24)
in (2), and using the relations which express the cr-invariance of the
measure:

we get

which is valid for all k ^ r, if r > 1. In the case r — 1, we have h(^i) = //, =
Hk-Hk_l for all k>l.

Now, imagine to be given a sequence o> produced by the dynamical
system under study, which we suppose to be described by an unknown
Gibbs measure. What we just discussed shows that there are ways to deter-
mine if the associated potential is a finite range one.

A possible criterion is based on equation (25). In fact, the knowledge
of co up to its nth entry allows to determine the empirical measures 7™ of
cylinders of any length, and also to calculate

for any k. If there is a r for which the quantity H%— H^_l is close to be
constant in k for r < k « n, then we can assume that the potential we are
looking for has range r.
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6.2. Identification of Finite-Range Potentials

The question we will now address is that of identification of potentials,
in the case where we restrict our search to potentials of range r. We will
obtain more conclusive results than those of Section 4. In fact, for sim-
plicity, we shall treat the problem of simultaneously identifying the poten-
tial and the grammar.

Let us consider the case of the alphabet {1,..., N} where no grammar
is present. A Gibbs measure n of range r is completely determined by
(N— 1) N''~l independent parameters. A possible choice for these is

where y = 1,..., j V — 1 , K = ( k l - - - k r _ l ) follows the lexicografic order of
ki,..., kr_l = I,..., N, and i// is a normalized potential associated to /u. Since
a normalized potential ^ satisfies the equation

i// cannot be positive. So, the parameters p — {pJK} take values in the open
set(0, l)'"-"^1.

Let us extend the set of possible values of the parameters p = {pjK} to
the compact set &= [0, \^-N~^N' _ This amounts to adding measures for
which one or more cylinders of length r are forbidden (i.e., have measure
zero). If the range r is at least two, between these there are all Gibbs
measures /^ with 0 Holder continuous of range r, and G any grammar of
the type defined in Section 2.

For any sequence co, for any n^ 1, let us now define the Maximum
Likelihood set

3? is compact, /J.p(\_ii((o) • • • /„(«)]) is a continuous functions of the param-
eters p for any fixed sequence co. This implies that the maximum is attained
at least for some p e &.

Let us also define the Minimum Relative Entropy set

where T™ is defined according to (17) . ^ is compact, h(T™ \ fj.p) is a lower
semi-continuous functions of the parameters p for any fixed sequence o>, so
that the minimum is attained at least for some pe&.
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Let us now suppose that the sequence a> is produced by a dynamical
system described by an unknown Gibbs measure ^, the one we want to
identify. We have:

Proposition 1. In the limit «-» oo, the set Jlrn(co) converges to a
unique />«,, for /u°» almost all co. Moreover, the corresponding measure ^
equals /j.^1 if the potential (f>* is of range r.

Proposition 2. In the limit n -> oo, the set Srn(co) converges to a
unique pK, the same as in Proposition 1, for n^,. almost all co. The corre-
sponding measure np equals //^ if the potential ^* is of range r.

Remark. If (j>* is not of range r, fj.p represents the best approxima-
tion to n^t in the sense of both the Maximum Likelihood and Minimum
Relative Entropy criteria. In fact, ^Poo and n°* coincide on all cylinders of
length smaller or equal to r.

Proof of Proposition 1. Let us define

Using the Perron-Frobenius-Ruelle equation it is easy to show that, in the
case of range r, the measure of any cylinder of length n ^ r can be expressed
as

Using (28) together with equations (26) and (27) we can write

with

where a.JK is the number of subsequences {jK} appearing in [/'i(co) • • • / „ (« ) ] ,
and /?£is the number of subsequences {NK} appearing in [/](«) • • • in(io)~].
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For all w in a set Q^ of measure one w.r.t. /i^», such that all «e£2£
do not contain transitions forbidden by G*, we have the following facts:

( 1 )  t h e  n u m b e r s  o £ , / y ™  c o n v e r g e  t o  ^ ( [ / K ] ) , / u ^ ' ( [ N K ] )  f o r
n —> oc;

(2) the function

g a a ( p ) = l im #„(/>)
n —* co

has its maximum on .^ at the point p*, defined by

(3) /„(/>) converges uniformely to the function zero for n -* ce, in a
closed ball centered at />*;

(4) £„(/>) converges uniformely to g x ( p ) in a closed ball centered
at/j*.

Notice that (1) to (4) are true independently of the fact that p* is in the
interior of 3? (if G* is the full Markov matrix) or on the border of #.

Now, let us consider a sequence {/>„}„ of points in which : n ( p ) has a
maximum, which converges to a point px. Points ( l ) - (4 ) imply that #„(/>)
has a maximum at px, which must coincide with p*. We have thus proved
that the set Jtrn(oj) converges to the unique point p^ defined by (29). If the
potential </;* is of range r, Eq. (6) implies that the measure nf«, coincides
with//«;.

Proof of Proposition 2. The measure 71" is ergodic. Using the
proposition (13) , it can be shown that, if fj.p is the measure corresponding
to a normalized potential \\i of range r:
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The function 71" has its maximum on 2P at the point p(n\ defined by

so that

Now, the numbers T«(\_jK\), T™(\_NK}) converge t o / / £ ( [ j K \ ) , ^ ( [ N K ] )
for n -» oo, for /<^» almost all co. This implies that <•?'„(«) converges to the
unique point px:

the same as in equation (29). The sets Sr
n(u>) and ./ /^(w) may not coincide

at finite n but they do converge to the same unique point for n —» oc.

Remark. According to the Minimum Relative Entropy criterion,
the best choice of the measure at finite n is given by equation (30). Notice
that this coincides with the choice of a potential of range r that one would
make by directly applying equation (6), approximating the unknown
asymptotic measure by the empirical one.

7. CONCLUSIONS AND PERSPECTIVES

Whether or not Gibbs measures are relevant for a dynamical modeling
of turbulence remains an open question. However, since these ergodic
measures have a transparent structure and very much is known about their
properties, it is tempting to consider possible criteria for the identification
of potentials (or Gibbs measures) from experimental data. The present
work is an attempt in this direction.

The main tool used in our work is the relative entropy of an ergodic
measure with respect to a Gibbs measure, a quantity related to the
Kullback-Leibler discrepancy. In this way, in Section 3, we prove a relative
ergodic theorem. Since this result may be read as an exponential splitting
of Poincare return times for orbits that are typical for different potentials,
it is natural to use it for the identification of Gibbs measures. This is
carried out in Section 4 where we can see that, for each finite time observa-
tion, "wrong" potentials are ruled out, even if the strategy may not con-
verge for asymptotic times.
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We also show how relative entropy can also be useful for the iden-
tification of grammars, adding a new strategy to the ones proposed in
ref. 5.

Then we describe an alternative way to treat the problem. Since finite
range potentials approach any potential exponentially fast as their range
increases, and the corresponding measures also converge in the vague
topology, it is worthwhile to solve the problem inside the set of finite range
potentials for a given range and then eventually increase it to improve the
estimation. In Section 4 we show how this can be done by two possible
procedures. The first, already employed in ref. 5, uses a maximum likeli-
hood principle: at each stage of the observation we choose, inside the
potentials of range r, those who maximise the measure of the observed
sequence. A second criterion uses the relative entropy of empirical measures
with respect to Gibbs measures as a tool for identification.

By giving a way of estimating the range of a potential from observa-
tion, we have tried to fill the gap between Section 4 and Section 6.

As stated, it is not clear for the moment what shall be the outcome of
the identification strategies when applied to experimental sequences in tur-
bulence, an issue we are presently dealing with.

Another related topic, see ref. 19, is the study of possible interesting
subsets of sequences, still of full measure, for which the convergence of the
strategies of identification may be faster and relevant for turbulence.

We hope that our work will increase the present interest in linking
statistics and dynamics in turbulence.
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